

Energy conversion

Subject Information		
Code	UE5 S2	
Credits (ECTS)	7	
Semester	1 (mid-September – mid-January)	
Time Allocation (Lec. / Prac. / Lab/ Project)	55 h / 35 h / 0 / 0	
Lecturers	Pr Frédéric MARIAS, Pr Mathieu MORY, Dr Didier Haillot, Dr Tarik Kousksou	
Pre-requisites		
Assessment	Final exam	
Lec. : Lectures	Prac. : Practical works ("small classes")	Lab.: Laboratories

Subject Description		
Introduction	The purpose of this course is to study the different ways of converting energy resources into useful energy services.	
Learning outcomes	 After this course the students should be able to: describe the major processes for producing electricity; give the typical sizes of the technologies; explain the influence major parameters that influence the efficiency of the power plants; 	
Content	 Nuclear power plants and coal power plants (15 h) <i>Content</i> Principle of nuclear fission, different types of reactors, efficiency of nuclear power plants. Cycles for energy conversion in coal power plants, technologies for coal combustion and pollution control. Biomass conversion and biofuels (10 h F. Marias) <i>Content</i> Characterization of the different types of biomass, specific issues linked to the biomass use as an energy source. Types of energy services that can be satisfied by biomass, overview of the different processes that can be used for biomass conversion. Economic and environmental aspects. <i>Objectives</i> Understand the problematics linked with the use of biomass as an energy source. Be able to understand the different processes used for biomass conversion, and the types of energy services that they satisfy. Mechanical energy conversion (2 h M. Mory) <i>Content</i> Eorrees, energy and power 	

	Objectives
	Introduce that the scaling of an optimized mechanical system is the compromise
	between force and velocity (or head and flow rate)
4.	Principles of the hydropower (8 h M. Mory)
	Content
	Classification of hydropower plants according to the available water and head.
	Losses and the optimized scaling of a power plant, turbine choice.
	Medium and high head power plants.
	Low head power plants, including tidal power plants.
	Energy storage using power plants
	Objectives
	Know the principles of scaling of a hydropower system and be aware of the
	classification of hydropower system in relation to turbines types.
	Be aware of available operating systems
5.	Wind energy and marine current energy (8 h M. Mory)
	Content
	The Betz formula.
	Wind energy turbines, capacity factor, onshore/offshore wind turbines
	Marine current energy turbines
	Objectives
	Know the principles of scaling of a wind and current marine turbine
	Be aware of available operating systems
6.	Other Marine energies (17 h M. Mory)
	Content
	Scaling of an osmotic power energy system.
	Scaling of an Ocean thermal energy system.
	Wave energy: available resource, Wave energy converters (Oscillating water column
	systems, overtopping systems, point absorbers), control operation.
	Objectives
	Know the available resource of marine energies, the different systems of marine
	energy conversion.
	Be aware of available operating systems
7.	Geothermal energy (10 h M. Mory)
	Content
	Description of the different conversion technologies from geothermal resources.
	Efficiency of power production from geothermal resources, economic aspects and
	examples.
	Introduction to energy aspects of urban systems, integration of heat pumps. Energy
	savings and CO_2 reduction.
	Objectives
	Understand the thermodynamic principles used for electricity production from
	geothermal resources
	Know the fields of application of the different technologies, their advantages and
	their drawbacks
0	Know about the important energy aspects in urban systems
8.	Conversion of sun energy (10 h D. Haillot)
	Solar neat, Solar thermal plants and Photovoltaics
	Content
	Solar energy fundamentals, concentrated solar power, solar thermal power plants,
	parabolic frough, central receiver system, solar field investment cost and levelised
	electricity cost.
	<i>Upjectives</i>
Δ	Fuel calls and others (10 h T. Venskeen)
9.	ruei cens and others (10 n 1. Kousksou)
Litereture	
LITELATOR	

