

Energy efficiency and reuse

Subject Information		
UE3 S1		
7		
2 (mid-January - June)		
28 h / 22 h / 0 / 50 h		
Dr Tarik KOUSKSOU, Pr. Jean-Pierre BEDECARRATS.		
2 hours final written examination + project		

Lec. : Lectures

Prac. : Practical works ("small classes")

Lab.: Laboratories

Subject Description		
Introduction	This course presents energy efficient technologies and methods for various applications which offer the potential for substantial energy conservation. The technologies mainly concern energy storage and distribution. The main method uses thermoeconomics, which, as an exergy-aided cost-reduction method, provides important information for the design of cost-effective energy-conversion plants	
Learning outcomes	Knowledge of thermoeconomics. Knowledge of each kind of energetic networks; Knowledge of physical and thermal mechanisms controlling energy storage.	
Content	 1. Thermoeconomics 2. Energy networks Electrical networks, Gas networks and Heat networks. 3. Energy Storage Methods 4.1. Mechanical Energy Storage 4.2. Chemical Energy Storage 4.3. Magnetic Storage 4.4. Thermal Energy Storage (TES) 4. Hydrogen for Energy Storage 5.1. Storage Characteristics of Hydrogen 5.2. Hydrogen Storage Technologies 5.3. Hydrogen Production 5. Comparison of ES Technologies 	

Literature	Thermal design and optimization. Bejan, A., Tsatsaronis, G., and Moran, M., 1996. J. Wiley,
	New York.
	Thermal Energy Storage: Systems and Applications, Second Edition. Ibrahim Dincer and
	Marc A. Rosen. 2011 John Wiley & Sons, Ltd
	Heat and cold storage with PCM. An up to date introduction into basics and applications.
	Harald Mehling. Luisa F. Cabeza. Series: Heat and Mass Transfer. Springer, 2008.

