

Modelling of energetic systems

Subject Information	
Code	UE3 S2
Credits (ECTS)	7
Semester	2 (mid-January - June)
Time Allocation (Lec. / Prac. / Lab/ Project)	18 h / 32 h / 0 / 50 h
Lecturer	Dr. Erwin FRANQUET, Dr Sylvain SERRA.
Pre-requisites	
Assessment	Final exam and final project (simulation+report)

Lec. : Lectures

Prac. : Practical works ("small classes")

Lab.: Laboratories

Subject Description		
Introduction	Nowadays, many studies involve numerical modelling, often via dedicated softwares. Practically, one always find the same key ingredients: transcription of the geometry, meshing of the corresponding domain, physical phenomena to consider, numerical resolution. Even if these tasks are usually done with a software, it is important to have a fair view of these steps so as to produce relevant results. This lecture is devoted to give the basic knowledges to a future engineer who might one day realize, analyse or order an industrial simulation.	
Learning outcomes	 After this course the students should: be able to address a complex industrial problem. be able to perform its simulation. know how to analyse each behaviour and step of the simulation. know how present interesting and relevant results 	
Content	Introduction and basics 1. History and interests 2. Basic principles 3. Software's'overview Part I: Domain of study 1. Geometrical description 2. Meshing Part II: Physical modelling 1. Basics 2. Compressibility	

3. Turbulence

- Multi-phase
 Chemistry

Part III: Numerical scheme

- 1. Forewords
- Convective terms
 Diffuse terms
- 4. Source terms

Part IV: Post-treatment

Projects (50 h)

Literature

