

Numerical tools for optimization

Subject Information				
Code	UE3 S3			
Credits (ECTS)	7			
Semester	2 (mid-January - June)			
Time Allocation (Lec. / Prac. / Lab/ Project)	20 h / 30 h / 0 / 50 h			
Lecturer	Pr. Jean-Michel RENEAUME, Dr Sylvain SERRA.			
Pre-requisites				
Assessment	Final written examination + project			

Lec. : Lectures

Prac. : Practical works ("small classes")

Lab.: Laboratories

Subject Description			
Introduction	Optimization is one of the major quantitative tools for decision-making. Acquainting students with the optimization problem formulation (objective function, optimization variables and constraints) and solution (algorithms and software tools) is the primary aim of this subject.		
Learning outcomes	 After this course, students should: be able to formulate an optimization problem be able to characterize the formulated problem (LP, NLP, MILP, MINLP) and select an appropriate optimization algorithm (Simplex, SQP, Branch and Bound, OA/ER) have a basic knowledge of the main algorithm be able to use the main tools: Excel®, GAMS® 		
Content	 Introduction Motivation, scope, general formulation procedure, examples Unconstrained Optimization Basic Concepts Continuity, convexity, extremum, necessary and sufficient condition One-dimensional Search Scanning and bracketing procedure, Newton-like method Multivariable Optimization Direct methods, indirect methods, random search 		

III.	Continuous Constrained Optimization	
	1. Linear Programming	
	Simplex method	
	2. The Theory of Constrained Optimization	
	Lagrange multipliers, first and second order condition, duality	
	3. Quadratic Programming	
	Equality constraints, active set method	
	4. Non Linear Programming	
	Penalty function, Successive Quadratic Programming,	
IV.	Discrete Constrained Optimization	
	1. Dynamic Programming	
	Bellman's principle	
	2. Mixed-Integer Programming	
	Multi-period optimization, Branch and Bound	
	3. Mixed-Integer Non Linear Programming	
	Bender's decomposition, Outer Approximation	
V.	Multi-objective Optimization	
	Pareto optimal solution, ε -constraints Method, random search	
VI.	Dynamic Optimization	
	1. Multi-period optimization	
	2. Discretization Methods	
	Control Vector Parametrization	
	3. Variational Methods	
	Optimal control, Pontryagin's Maximum Principle	
VII.	Global Optimization	
	Stochastic/deterministic methods	
VIII.	Process Optimization	
	1. General Environments	
	GAMS, Excel	
	2. Flowsheeting Environments	
	ProSim Plus	
т •		
Typical Projects:		
	Heat Exchanger Network (HEN) Optimization	
	Synthesis of General Distillation Sequences	
	Pump Network Synthesis	
	near and Mixed-Integer Optimization – Fundamentals and Applications. C.A. Floudas.	
Oxford University Press, 1995		
Practical Methods of Optimization. R. Fletcher. Second Edition. Wiley-Interscience		
Publication, 1996		
	<i>ization of Chemical Processes</i> . T.F. Edgar and D.M. Himmelblau. McGraw-Hill	
Intern	ational Editions, 1989.	

