Computer Aided Process Design
(courses taught in English)
INDUSTRIAL RISK MANAGEMENT

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>24h / - / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>T. Baron (Total)</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Group Project: Oral Presentation (1/3) and written evaluation (2/3)</td>
</tr>
</tbody>
</table>

Lec. : Lectures **Prac. : Practical works ("small classes")** **Lab.: Laboratories**

Subject Description

Introduction
Process engineers are expected to make decisions either for the building of a new process or for revamping of an old one. The process engineer should make these decisions considering the social, environmental and economic context.

This lecture, given by a highly experienced industrial partner aims at preparing future process engineers to industrial risk management.

Learning outcomes

After this course, students will:
- Be aware of issues and risks (economic, social, environmental...) associated with the conception or the revamping of an industrial unit
- Know the main steps in a design project
- Be able to estimate the results of an industrial activity

Contents

I Economics of an industrial activity
- Variable expenses of process
- Estimation of a margin upon variable expenses
- Capital expenses of a process
- Results of an industrial activity

II Design and risks management
- Production of new products. Definition and adjustment of this product (R&D, industrial trials, management)
- Revamping of an existing process
- Price trend analysis of the different steps in the project
- Risk Management: preliminary questions....
Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Autumn</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>6h / 12h / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Dr. S. Sochard</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Unit Operation, mass and heat balances</td>
</tr>
<tr>
<td>Assessment</td>
<td>project</td>
</tr>
</tbody>
</table>

Lec. : Lectures Prac. : Practical works (“small classes”) Lab.: Laboratories

Subject Description

Introduction

Process synthesis is a methodology based on the experience and know-how of engineers. These qualitative procedures lead to an acceptable (from a technical and economic point of view) process predesign using heuristic rules.

Learning outcomes

After this course, students will:
- know the main steps of the hierarchical procedure proposed by Pr. Douglas
- know the main heuristics for each step
- be able to pre design a process based on these rules

Contents

1. Definition of process inputs (raw materials) and outputs,
2. General process structure
3. Reactive zone: heat effect, reactor type
4. Design of gas and liquid separation,
5. Heat exchanger network design.

Literature

- Process Design Principles; W.D. Seider, J.D. Seader, D.R. Lewin. J Wiley&Sons 1999
Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>4h / 16h / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Prof. J-M. Reneaume</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Optimization Methods (GC2MI2)</td>
</tr>
<tr>
<td>Assessment</td>
<td>Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lec.</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prac.</td>
<td>Practical works (“small classes”)</td>
</tr>
<tr>
<td>Lab.</td>
<td>Laboratories</td>
</tr>
</tbody>
</table>

Subject Description

Introduction
Optimisation is one of the major quantitative tools for decision-making in Chemical Engineering. Students are familiarized with Process Optimization (operating and design parameter optimization) using flowsheeting environments (ProSim Plus and/or Pro II).

Learning outcomes
After the course the students will:
- have advanced knowledge about optimization algorithms (SQP) and solution strategies (Feasible or Infeasible Path)
- be able to formulate and solve a process optimisation problem within a flowsheeting environment

Contents
Theoretical concepts are presented: Feasible or Infeasible Path, SQP algorithm During the proposed project, the students will have the opportunity to formulate and solve a parametrical optimization process. Considered examples are: HDA process or Cyclohexane plant. ProSim Plus and ProII are the selected optimization tools.

Literature
INDUSTRIAL OPTIMIZATION PROBLEMS: SCM, SCHEDULING

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>2</td>
</tr>
<tr>
<td>Semester</td>
<td>Autumn</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>30h / - / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Dr. Zoltan LELKES (OPTASOFT)</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Optimisation methods (GC2M12)</td>
</tr>
</tbody>
</table>
| Assessment | - written: test 20%
 - oral: participation in classes 40%
 - project: Software development with AIMMS 40% |

Lec. : Lectures **Prac. : Practical works ("small classes")** **Lab.: Laboratories**

Subject Description

Introduction
The aim of the course is to familiarize the students with the AIMMS optimization platform. Understanding the SCM and scheduling problems (capacity optimization, short term planning, flow-shop, job-shop).

Learning outcomes
After the course the students will be able to:
- Use AIMMS platform for optimization
- Formalize of Supply Chain optimization problem
- Know different heuristics and meta-heuristics methods for scheduling optimization
- Understand the parts of a complete scheduling planning system (capacity planning, operation scheduling optimization, reactive scheduling)

Contents
During the course we will present the followings:
- AIMMS optimization platform
- AIMMS project, model tree, algorithmic features, GUI, integration
- Case study: SCM optimization problem in SAB Miller company
- Programming a simple SCM optimization problem in AIMMS
- Programming rolling horizon optimization in AIMMS
- Flow-shop, job-shop scheduling, heuristics and meta-heuristics methods
- Case study: a simple job-shop scheduling problem in AIMMS
- Case study: Scheduling in Graboplast company

Literature
Johannes Bisschop: AIMMS Optimization Modeling
Marcel Roelofs, Johannes Bisschop: AIMMS User's Guide
DATA RECONCILIATION

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>6h / 4h /-</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Dr S. Sochard</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Statistical tests, nonlinear optimisation</td>
</tr>
<tr>
<td>Assessment</td>
<td>project</td>
</tr>
</tbody>
</table>

Lec. : Lectures Prac. : Practical works (“small classes”) Lab.: Laboratories

Subject Description

Introduction

In a wide range of situations, chemical engineers point out differences between experimental result and theory. So the main question is: “are my experiments wrong or did I use an inappropriate theory?”. This course answers this central question through a systematic approach.

Learning outcomes

After this course, students will:
- Be able to derive a consistent set of measurements
- Be able to use gross error detection algorithms
- Have basic knowledge on observability and redundancy

Contents

- Introduction
- Steady state detection
- Consistent set of measurements derivation
- Sensor fault diagnosis
- Data reconciliation on partial observable systems

Literature

MODELLING PROCESS OPERATION II

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>2</td>
</tr>
<tr>
<td>Semester</td>
<td>Autumn</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>2h / 22h / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Pr. F. Marias</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Thermodynamics-Process operation, Modelling process operation I</td>
</tr>
<tr>
<td>Assessment</td>
<td>Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lec. : Lectures</th>
<th>Prac. : Practical works (“small classes”)</th>
<th>Lab.: Laboratories</th>
</tr>
</thead>
</table>

Subject Description

Introduction

This lecture gives insights on the skills and knowledge needed in the topic of modelling process operation. During this course, students will be able to derive a mathematical model for a multistage and multi components distillation column.

Learning outcomes

After the lecture, students will know how to:

- derive equations translating mass, species and energy conservation in a distillation column.
- Formulate the mathematical model in a way that it can be solved using a Newton Raphson algorithm
- use the numerical tools (developed during the lecture) to strengthen their knowledge in the field of distillation

Contents

- Numerical skills reminder in order to solve linear systems
 - Modelling of multistage and multi components separation process
 - Solving
 - Conclusion

Literature

- Techniques de l'ingénieur (J1076, J1021, J 2623)
- Process modeling simulation and control for chemical engineers, W.L. Luyben, Mc Graw-Hill 1990
Computational Fluid Dynamics is a recent tool which is commonly used for the design of new unitary operations (reactors, separators, heat exchangers…). The knowledge of such a tool is important for students that aim at designing new processes.

After the course the students will be able to:

- know the numerical methods used in Computational Fluid Dynamics
- know the main mathematical models allowing the description of physical phenomena
- handle a complete simulation using Fluent (sketching, CAD, Meshing, solving)
- know the influence of the main parameters allowing the simulation to converge (meshing, relaxation, interpolation)
- Analyse and validate the results

1) Introduction to computational Fluid Dynamics
 - Main goals of CFD
 - Main strategies used in CFD
 - Discretisation using finite volume methods
 - Examples
 - Turbulence modelling

2) Software environment Ansys WorkBench

3) Case Studies

An Introduction to Computational Fluid Dynamics : 2nd Edition (H. Henk Kaarle Versteeg, Weeratunge Malalasekera) Pearson Education

Ansys Fluent User Guide
Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OM3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>20h / - / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>O. Baudouin (ProSim SA)</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>VB Language</td>
</tr>
<tr>
<td>Assessment</td>
<td>Project (study report for the gas treatment unit)</td>
</tr>
</tbody>
</table>

Subject Description

Introduction

The main objective of this course is to train students to perform some relatively complex steady state process simulation problems. This course is built around the process simulation of a gas treatment unit. Several thermodynamical models will be used and students will analyse the effects of the choice of such models. ProSimPlus will be the steady state process simulation software that they will work with.

Learning outcomes

After this course, abilities acquired by students:

- Distillation curves (TBP, ASTM…) and pseudo-components
- Selection of thermodynamics models
- Phase envelope and equilibrium curves analysis (retrograde condensation)
- Methodology for modelling of complex units with a steady state process simulation software (numerous cycling networks, process constraints, absorbers, distillation columns, user defined unit operations…)

Contents

During this course, students will concentrate on the material system modelling, linked to unit operations used in the simulation file (streams characteristics from a distillation curve, acid gas treatment with amine solutions, liquid phase splitting with water presence…)

A methodology for the creation of a complex simulation file will be presented and the complexity of unit operation modelling will be introduced step by step. A case study of a user defined unit operation with a windows script module (VBS language) will also be conducted by students (this kind of unit operation is often used in the industry to introduce its know-how in a commercial simulation software).

Analysis tools, particularly thermodynamics tools, available in the process simulation software will be widely used.
MIXTURE PROPERTIES AND FLUID PHASE EQUILIBRIA CALCULATION

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>1</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>10h / 10h</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Pr P. Cézac</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Solution Thermodynamics</td>
</tr>
<tr>
<td>Assessment</td>
<td>Project</td>
</tr>
</tbody>
</table>

Lec.: Lectures Prac.: Practical works (“small classes”) Lab.: Laboratories

Subject Description

Introduction

Mixture properties and fluid phase equilibria calculations are an essential tool for the analysis of the real processes. The primary aim of this subject is to train students to use a thermophysical properties calculation server, Simulis Thermodynamics©.

Learning outcomes

- Partial Properties
- Chemical Potential
- Real Solution
- gE models
- EOS
- Phases equilibria and thermo physical properties calculation.

Contents

After this course, students will:

- have a great knowledge on thermodynamics models
- be able to describe any thermodynamic equilibrium in a complex system.
- know how to use Simulis Thermodynamics© and VBA

Literature

BATCH PROCESSES

Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits (ECTS)</td>
<td>2</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>8h / - / 16h</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Dr JP Serin / Dr F Contamine / Pr P Cézac</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Modelling, distillation, Kinetic, thermodynamic, thermochemistry</td>
</tr>
<tr>
<td>Assessment</td>
<td>Written report for each day of practical work</td>
</tr>
</tbody>
</table>

Lec. : Lectures Prac. : Practical works (“small classes”) Lab.: Laboratories

Subject Description

Introduction
The aim of this course is to familiarize students with the simulation of a batch process. The coupling of the simulation with two practical study cases (distillation column, reactor) will allow them to compare the numerical approach and experimental constraints.

Learning outcomes
At the end of this course, students will be able to use simulators (BATCHREACTOR © and BATCHCOLUMN) to simulate the operation of a distillation column and a reactor in batch mode.

Contents
- Modelling
- Presentation of batch reactor© and batch column ©
- Application:
 - Dynamic simulation of the thermal runaway of a reactor
 - Simulation and optimization of a distillation column for the mixture Acetone / Water / IPA

Literature
Process modelling, simulation, and control for chemical engineers W.L. Luyben
McGraw-Hill, 1990
MODELLING, SIMULATION AND OPTIMISATION USING gPROMS

<table>
<thead>
<tr>
<th>Subject Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Credits (ECTS)</td>
</tr>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>Time Allocation</td>
</tr>
<tr>
<td>Lecturers</td>
</tr>
<tr>
<td>Pre-requisites</td>
</tr>
<tr>
<td>Assessment</td>
</tr>
</tbody>
</table>

Lec. : Lectures **Prac. : Practical works (“small classes”)** **Lab.: Laboratories**

<table>
<thead>
<tr>
<th>Subject Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
</tbody>
</table>
| **Learning outcomes** | At the end of the course, the students will be able to:
 - translate a mathematical model expressed in terms of a mixed system of integral, ordinary and partial differential, and algebraic equations (IPDAEs) to a working gPROMS model
 - use the above model to perform steady-state and dynamic simulations
 - express operating procedures in the gPROMS language
 - perform steady-state and dynamic optimisation calculations in gPROMS
 - estimate model parameters using data from steady-state and dynamic experiments
 - use the gPROMS Model Builder to build, debug and manage models. |
| **Contents** | This involves a number of topics that are closely aligned with the above Learning Outcomes. |
| **Literature** | gPROMS Introductory Training Course notes
gPROMS Dynamic Optimisation/Parameter Estimation Training Course notes. |
Subject Information

<table>
<thead>
<tr>
<th>Code</th>
<th>EP3OS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Time Allocation (Lec. / Prac. / Lab.)</td>
<td>10 h / 20 h / -</td>
</tr>
<tr>
<td>Lecturers</td>
<td>M. Ricarde, Pr. F. Marias</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Basic regulatory control (PID loop)</td>
</tr>
<tr>
<td>Assessment</td>
<td>2-hour examination</td>
</tr>
</tbody>
</table>

Lec.: Lectures
Prac.: Practical works (“small classes”)
Lab.: Laboratories

Subject Description

Introduction

Process automation and control methods: theory and use for petrol, chemical and pharmaceutical industries.

Learning outcomes

This education allows students to plan and to specify process control systems:
- safety controls,
- regulatory controls,
- chronological sequences,
- alarm and event monitoring,
- system architecture.

Contents

Basic and advanced regulatory methods:
- PID,
- split-range,
- ratio control,
- cascade control,
- feed forward control.

Safety Loops
- Matrix representation
- Safety shutdown system
- Safety Integrity Level

Software INDISS RSI

Examples and applications: Boiler, heat exchanger, distillation colon…

Literature

- Régulation industrielle, Emmanuel Godoy, Collectif Dunod, L’Usine Nouvelle.
- Régulation P.I.D, Daniel Lequesne, Lavoisier.
- Régulation de chaudières (Conférence Framatome).
- Système et instrumentation de sécurité (Yokogawa, Triconex, ICS…).
- RsBatch (Rockwell).
| SIMATIC Safety Matrix (Siemens) |